Adding Continuous Truck Counts to the Regional Data Archive (PORTAL)

Regional Freight TAC Meeting
May 12, 2010

Christopher Monsere
Assistant Professor
Portland State University
Civil and Environmental Engineering
Director, Intelligent Transportation Systems Laboratory
What’s in the PORTAL Database?

Loop Detector Data
20 s count, lane occupancy, speed from 500 detectors (1.2 mi spacing)

Incident Data
140,000 since 1999

Bus Data
1 year stop level data
140,000,000 rows

Weather Data
Every day since 2004

Days
Since July 2004
About +700 GB
6.9 Million
Detector Intervals

VMS Data
19 VMS since 1999

WIM Data
22 stations since 2005
30,026,606 trucks

Crash Data
All state-reported crashes since 1999 - ~580,000
Please, click on a pin to explore a station or select a station from the list in the upper left hand corner and click go.
Freeway Performance Measures

- Volume (Counts)
- Speed
- Occupancy
- Vehicle Miles Traveled
- Vehicle Hours Traveled
- Travel Time
- Delay
- Reliability
Interstate 5 Northbound

About 38.6 kilometers
Estimated Monthly Travel Time I-5 North September 2006

- Percent Congested
- Free Flow Travel Time
- Mean Travel Time
- 95th Percentile Travel Time

Lyman and Bertini, 2007
Travel Time Comparison, Northbound I-5, September 2004-2006

From monthly performance reports

Lyman and Bertini, 2007
Systematically Identifying Bottlenecks

Bottlenecks recurring at least 50%, 75%, and 90% of the time in Feb. 2008

Systematically Identifying Bottlenecks

Bottlenecks recurring at least 75% and 90% of the time in Feb. 2008

Systematically Identifying Bottlenecks

Bottlenecks recurring at least 90% of the time in Feb. 2008

Limitations of Existing Detection

• Only on freeways
 – Efforts to add arterial streets underway
• No information about type of vehicles
• Hardware and firmware upgrades not cost effective
This Project

• Develop system for permanent truck counts
 – 20-second intervals, 24 hours per day, 365 days per year
 – Explore freeway and arterial applications

• Likely uses of data
 – Measuring performance specific to freight
 – Transportation modeling in support of freight
 – Possible operational enhancements
Methods for Defining Trucks

- Manual (e.g. visual)
- Axle Sensors
- Vehicle Length
- Machine Vision
- Other Technologies
Dual-loop configuration

\[v_{off} = \frac{L_{loop} + L_{int}}{t_{off2} - t_{off1}} \]

\[L_{veh} = v_{off} (t_{off2} - t_{off1}) - L_{loop} \]
<table>
<thead>
<tr>
<th>Vehicles Classification</th>
<th>Range of Length (in ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHWA</td>
</tr>
<tr>
<td>Passenger vehicles (PV)</td>
<td>Less than 13</td>
</tr>
<tr>
<td>Single unit trucks (SU)</td>
<td>13 to 35</td>
</tr>
<tr>
<td>Combination trucks (CU)</td>
<td>36 to 61</td>
</tr>
<tr>
<td>Multi-trailer trucks (MU)</td>
<td>62 to 120</td>
</tr>
</tbody>
</table>
All Trucks
Mean = 63.28 n = 77935
Next Steps

• Identify test locations
• Develop independent hardware and software
 – Working with OSU Industrial Engineering faculty D. Kim and D. Porter
• Validate and fine tune method
• Deploy and integrate
Questions?

Christopher M. Monsere
Assistant Professor
Department of Civil & Environmental Engineering
Portland State University

monsere@pdx.edu
Phone: 503-725-9746
Fax: 503-725-5950

http://portal2.its.pdx.edu/home/