

Adding Continuous Truck Counts to the Regional Data Archive (PORTAL)

TransPORT July 14, 2010

Christopher Monsere

Assistant Professor Portland State University Civil and Environmental Engineering Director, Intelligent Transportation Systems Laboratory

Objective

- Develop system for permanent truck counts for the region's ITS monitoring system
 - Integrate with PORTAL
 - 20-second intervals, 24 hours per day, 365 days per year
 - Explore freeway and possible arterial applications

Likely uses of data

- Measuring performance specific to freight
- Adding value to private-sector truck GPS data
- Transportation modeling in support of freight
- Possible operational enhancements
 - Ramp metering
 - VSLs
 - Other

Methods for Defining Trucks

- Manual (e.g. visual)
- Axle Sensors
- Vehicle Length
- Machine Vision
- Other Technologies

Dual-loop configuration

$$v_{off} = \frac{L_{loop} + L_{int}}{t_{off2} - t_{off1}} \qquad L_{veh} = v_{off} (t_{off2} - t_{off1}) - L_{loop}$$

Vehicles	Range of Length (in ft)						
Classification	FHWA	ODOT	WSDOT				
Passenger vehicles (PV)	Less than 13	Less than 20	Less than 26				
Single unit trucks (SU)	13 to 35	20 to 35	26 to 39				
Combination trucks (CU)	36 to 61	36 to 60	40 to 65				
Multi-trailer trucks (MU)	62 to 120	61 to 150	> 65				

Options Considered

- Upgrade to 2070 ramp controllers
- Rewrite Wapiti ramp controller firmware
- Develop and program independent device at select number of stations

Proposed Work Plan

- Identify test locations
- Develop independent hardware and software
 - Working with OSU Industrial Engineering faculty D. Kim and D. Porter
- Validate methodology
- Configure for network, integrate with ATMS
- Identify remaining locations for deployment

Resources

- City of Portland experience with truck priority logic
- University of Washington dual-loop algorithm and sensitivity testing

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	TABLE 3	One-Hour Video-Based, Event Data-Based, and TDAD-Based Vehicle Classification Data									
Bin No. V_{ν} V_{E} V_{T} $\frac{V_{E}}{V_{\nu}}$ $\frac{V_{T}}{V_{\nu}}$ V_{ν} V_{E} V_{T} $\frac{V_{E}}{V_{\nu}}$ $\frac{V_{T}}{V_{\nu}}$ Bin 1973973914100%94%146314631326100%91%Bin 2393930100%77%12127100%58%Bin 3444435100%80%202014100%70%Bin 488877399%83%242416100%67%Subtotal11441143105299.9%92.0%151915191363100.0%89.7%		Lane 1			Lane 2						
Bin 1973973914100%94%146314631326100%91%Bin 2393930100%77%12127100%58%Bin 3444435100%80%202014100%70%Bin 488877399%83%242416100%67%Subtotal11441143105299.9%92.0%151915191363100.0%89.7%	Bin No.	V_V	V _E	V _T	$\frac{V_E}{V_V}$	$\frac{V_T}{V_V}$	V_V	V _E	VT	$\frac{V_E}{V_V}$	$\frac{V_T}{V_V}$
Bin 23930100%77%12127100%58%Bin 3444435100%80%202014100%70%Bin 488877399%83%242416100%67%Subtotal11441143105299.9%92.0%151915191363100.0%89.7%	Bin 1	973	973	914	100%	94%	1463	1463	1326	100%	91%
Bin 3444435100%80%202014100%70%Bin 488877399%83%242416100%67%Subtotal11441143105299.9%92.0%151915191363100.0%89.7%	Bin 2	39	39	30	100%	77%	12	12	7	100%	58%
Bin 4 88 87 73 99% 83% 24 24 16 100% 67% Subtotal 1144 1143 1052 99.9% 92.0% 1519 1519 1363 100.0% 89.7%	Bin 3	44	44	35	100%	80%	20	20	14	100%	70%
Subtotal 1144 1143 1052 99.9% 92.0% 1519 1519 1363 100.0% 89.7%	Bin 4	88	87	73	99%	83%	24	24	16	100%	67%
	Subtotal	1144	1143	1052	99.9%	92.0%	1519	1519	1363	100.0%	89.7%

 V_V = number of vehicles that were classified into bins when processing the videotape

 V_E = number of vehicles that were classified into the same bins by the new dual-loop algorithm and by processing the video V_T = number of vehicles that were classified into the same bins by the current WSDOT dual-loop algorithm and by process

 V_T = number of vehicles that were classified into the same bins by the current WSDOT dual-loop algorithm and by

Zhang, Xiaoping, Nancy Nihan, and Yinhai Wang. 2005. Improved Dual-Loop Detection System for Collecting Real-Time Truck Data. *Transportation Research Record: Journal of the Transportation Research Board* 1917, no. 1 (January 1): 108-115. doi:<u>10.3141/1917-13</u>.

Resources

- FHWA pooled-fund study on length-based classification
- ODOT Traffic Monitoring
- OSU experience getting devices on ODOT network

Other items to consider

- Integrate reading of RFID tags on trucks?
- RTMS devices in Washington configured for length?
- Other?

ODOT Permanent Count

Location: I-5; MP 298.24; PACIFIC HIGHWAY NO. 1; 1.07 miles north of S.W. Terwilliger Blvd, in Portland

Site Name: Installed: Iowa Street (26-016) December, 1961

HISTORICAL TRAFFIC DATA

	Percent of AADT								
Year	Average Daily Traffic	Max Day	Max Hour	10TH Hour	20TH Hour	30TH Hour			
1999	144033	121	8.8	8.6	8.5	8.4			
2000	141525	118	8.8	8.5	8.4	8.3			
2001	140698	119	8.8	8.6	8.5	8.5			
2002	142881	119	8.7	8.5	8.4	8.4			
2003	144060	120	8.7	8.5	8.5	8.4			
2004	142117	119	8.8	8.6	8.4	8.3			
2005	143566	118	8.8	8.5	8.4	8.4			
2006	144118	120	8.6	8.5	8.4	8.3			
2007	145047	119	9.2	8.3	8.3	8.2			
2008	139791	121	10.0	8.5	8.5	8.4			

2008 TRAFFIC DATA

	Average		Average			Percent of
	Weekday	Percent	Daily	Percent	Classification Breakdown	AADT
	Traffic	of AADT	Traffic	of AADT	Motorcyles	0.4
January	143597	103	133978	96	Passenger cars	47.4
February	154605	111	143374	103	Light Trucks	43.0
March	154796	111	144262	103	Buses	0.3
April	157134	112	145236	104	Single unit trucks (2 axles)	2.4
May	152541	109	141813	101	Single unit trucks (3 axles)	0.5
June	156565	112	145325	104	Single unit trucks (4 or more axles)	0.0
July	160370	115	146161	105	Single trailer trucks (4 or less axles)	0.5
August	158853	114	148472	106	Single trailer trucks (5 axles)	3.5
September	150715	108	142216	102	Single trailer trucks (6 or more axles)	1.3
October	154056	110	143388	103	Multi trailer trucks (5 or less axles)	0.1
November	146890	105	136376	98	Multi trailer trucks (6 axles)	0.1
December	116039	83	106890	76	Multi trailer trucks (7 or more axles)	0.5

WIM Archive

Questions?

Christopher M. Monsere Assistant Professor Department of Civil & Environmental Engineering Portland State University

monsere@pdx.edu Phone: 503-725-9746 Fax: 503-725-5950

http://portal2.its.pdx.edu/home/

NATMEC 2010 -- The Use of Private Sector Truck G PS Data by Public Organizations, Edward McCormack, University of Washington

Data Acquisition - One Week of Data

<u>Back</u>

