
 1

PERMANENT FREIGHT DATA COLLECTION

INFRASTRUCTURE AND ARCHIVE SYSTEM

The Design, Integration and Testing of a Sensor Platform

for Monitoring Truck Flows on Arterial Roads

Final Report for

Prepared by

David S. Kim, J. David Porter, Seed Ghanbartehrani, Maryam Agahi

School of Mechanical, Industrial and Manufacturing Engineering

June 2013

 2

TABLE OF CONTENTS

1.0 INTRODUCTION ..7

2.0 ASSEMBLING AND CONFIGURING THE TRUCK

COUNT UNIT ..8

2.1. SINGLE BOARD COMPUTER .. 8

2.1.1. Physical Requirements ... 8

2.1.2. Operational Requirements .. 9

2.1.3. Selected SBC ... 9

2.2. TCU COMPONENT PARTS .. 10

2.2.1. The Interface Circuit .. 13

2.3. ASSEMBLING THE TCU .. 15

2.3.1. Preparing the Enclosure .. 15

2.3.2. Installing Components in the Enclosure .. 16

2.3.3. Installing the CF Card ... 18

2.4. PROGRAMMING THE TCU .. 19

2.4.1. Loading Software onto the CF Card .. 19

2.4.2. BIOS Settings .. 23

2.4.3. Other Settings ... 25

2.4.4. Accessing the TCU Remotely .. 26

2.5. INSTALLING THE TCU IN THE LOOP DETECTOR CABINET 27

2.6. DOWNLOADING DATA FROM THE TCU ... 28

2.6.1. Data Archiving Scripts ... 28

2.6.2. Manual Data Retrieval ... 29

2.6.2. Automated Data Retrieval Using Script ... 31

3.0 DATA COLLECTION ALGORITHM AND

SOFTWARE .. 32

3.1 DUAL LOOP GEOMETRY .. 32

3.2 TCU SOFTWARE .. 37

3.2.1. Constants ... 37

3.2.2. Procedures ... 38

3.2.2.1. Procedure main() .. 38

3.2.2.2. Procedure scan() ... 38

 3

3.2.2.3. Procedure time() ... 39

3.2.2.4. Procedure calc() ... 39

3.2.2.5. Procedure process() .. 40

3.2.2.6. Procedure speed() ... 42

3.2.2.7. Procedure length() .. 44

3.2.2.8. Procedure Eflag() ... 45

3.2.2.9. Procedure Cflag() ... 45

4.0 TRUCK COUNT UNIT ACCURACY ASSESSMENT 46

4.1. PROCEDURES AND ANALYSIS METHOD .. 46

4.2. LOCATION 1 RESULTS .. 48

4.3. LOCATION 2 RESULTS .. 54

5.0 CONCLUSIONS AND RECOMMENDATIONS 56

6.0 REFERENCES .. 57

APPENDIX A .. 58

 4

LIST OF FIGURES

Figure 1. A Basic SBC ...8

Figure 2. Team 2GB Compact Flash (CF) Flash Card ..12

Figure 3. PCM-3343F Board ...12

Figure 4. Enclosure ..12

Figure 5. 5V Power Adapter ..12

Figure 6. 5V Power Adapter ..12

Figure 7. LED Holder ..12

Figure 8. Fuse Holder ..12

Figure 9. Fuse...12

Figure 10. Rocker Switch ..12

Figure 11. Power Jack ..12

Figure 12. Board Stand Off ..13

Figure 13. The Interface Circuit...13

Figure 14. Electrical Diagram of the Interface Circuit ..14

Figure 15. From Top to Bottom: (1) The Data Connector Cable, (2) The GPIO

Connector Cable, and (3) The Interface Circuit ...15

Figure 16. Drilling Guide for the Front and Rear Panels of the Enclosure16

Figure 17. PCM-3343 SBC and Interface Circuit Mounted Inside the ABS

Enclosure..17

Figure 18. Components Installed on Front Panel...17

Figure 19. Components Installed on Rear Panel ..17

Figure 20: Enclosure Wiring Diagram ...18

Figure 21. Mounting the CF Card ..18

Figure 22. A Completely Assembled TCU ..19

Figure 23. Unmounting the CF Card in Gparted ...20

Figure 24. Deleting the CFC’s Partition in Gparted ..21

Figure 25. Deleting the CFC’s Partition in Gparted (cont.) ...21

Figure 26. Creating a Partition in the CFC ..22

Figure 27. Copying Image to the CF Card ...22

Figure 28. Main Menu for BIOS Settings ..23

Figure 29. Standard CMOS Features ...23

Figure 30. Advanced Chipset Features ..24

Figure 31. Saving data to CMOS ...24

Figure 32. Main Screen of PuTTY ..26

Figure 33. WinSCP Main Program Window ...30

Figure 34. Parameter Values to Create a Connection in WinSCP30

 5

Figure 35. MS DOS/Windows Batch File for Automatic Data Retrieval from the

TCU..31

Figure 36. Dual Loop Detection System..32

Figure 37. Constants used by the TCU's Data Collection Software37

Figure 38. Procedure main() ..38

Figure 39. Procedure scan() ...38

Figure 40. Procedure time() ...39

Figure 41. Procedure calc()..39

Figure 42. Procedure process() ..41

Figure 43. Procedure speed() ...43

Figure 44. Procedure length() ..44

Figure 45. Procedure Eflag()..45

Figure 46. Procedure length() ..45

Figure 47. I-205 Northbound Dual Inductive Loop Markings ..47

Figure 48. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 3....................49

Figure 49. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 4....................49

Figure 50. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 5....................50

Figure 51. Histogram of Speed Errors (in Miles per Hour) – Location 1,

Sensitivity 3 ...50

Figure 52. Histogram of Speed Errors (in Miles per Hour) – Location 1,

Sensitivity 4 ...51

Figure 53. Histogram of Speed Errors (in Miles per Hour) – Location 1,

Sensitivity 5 ...51

Figure 54. Comparison of Length Classification Between Video and TCU data –

Location 1, Sensitivity 3 ..52

Figure 55. Comparison of Length Classification Between Video and TCU data –

Location 1, Sensitivity 4 ..52

Figure 56. Comparison of Length Classification Between Video and TCU data –

Location 1, Sensitivity 5 ..53

Figure 57. Comparison of Length Classification Between Video and TCU data –

Location 2 ..54

Figure 58. Histogram of Length Errors (in Feet) – Location 2 ..55

Figure 59. Histogram of Speed Errors (in Miles per Hour) – Location 255

 6

LIST OF TABLES

Table 1. List of selected SBCs ...9

Table 2. Components needed to assemble TCUs...11

Table 3. Wiring diagram ..27

Table 4. Description of conventions ..27

Table 5. Notation used in the calculation of vehicle length estimates33

Table 6. The results of 15 scenarios to evaluate vehicle length estimators36

Table 7. Average differences at location 1 between the video analysis and TCU

length estimates ...48

Table 8. Average differences at location 1 between the video analysis and TCU

speed estimates..48

Table 9. Summary of length and speed errors at location 2 ...54

 7

1.0 INTRODUCTION

This report documents the results of the design, integration and testing of a sensor

platform for monitoring truck flows on arterial roads based on data collected via

inductive dual-loop detectors. The sensor platform, referred to as the Truck Count Unit

(TCU), is composed of both commercial-off-the-shelf (COTS) and custom hardware

components. The data collection and analysis software that processed the signals gathered

by the inductive dual-loop detectors is based on an algorithm originally developed at the

University of Washington. However, several modifications were needed to adapt this

algorithm to the traffic flow conditions experienced by vehicles traveling on arterial

roads.

The remainder of the report is organized as follows. Chapter 2 covers the assembly

and configuration of the TCU. This chapter also includes instructions on how to install a

fully configured the TCU in a loop detector cabinet. Chapter 3 describes the algorithm

implemented in the TCU software to estimate vehicle length. Chapter 4 documents the

results of testing the performance of the TCU at two different locations in Portland,

Oregon. Finally, chapter 5 concludes this report with conclusions and recommendations.

 8

2.0 ASSEMBLING AND CONFIGURING THE TRUCK

COUNT UNIT

This section describes the hardware components needed to assemble a complete and

functional TCU.

2.1. SINGLE BOARD COMPUTER

A single-board computer (SBC) is a complete computer built on a single circuit board

and may include microprocessor(s), memory, input/output(I/O) and other features

required of a functional computer. Figure 1 depicts an example of a basic SBC.

Figure 1. A Basic SBC

The following sections describe the physical and operational functional requirements

expected of a SBC for the purposes of this project.

2.1.1. Physical Requirements

The physical requirements expected from a SBC that will serve as the foundation for a

truck sensor are as follows:

 The SBC should be able to operate in extreme temperatures in the range of -10 °C

to +50 °C.

 The SBC should not have a cooling fan, because cooling fans have mechanical

parts that require maintenance. It is allowable to have heat sinks or heat dissipation

plates.

 The materials used in the SBC's printed circuit board (PCB), plastic parts, passive

and active elements should be durable. The use of solid-state capacitors is

recommended.

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Circuit_board
http://en.wikipedia.org/wiki/Microprocessor
http://en.wikipedia.org/wiki/RAM
http://en.wikipedia.org/wiki/Input/output

 9

2.1.2. Operational Requirements

The operational requirements expected from a SBC that will serve as the foundation for a

truck sensor are as follows:

 The SBC should have different types of interfaces to communicate with other

devices. This may include a serial port (e.g., RS232 or RS485), one or more USB

ports and digital Input/Output (I/O) lines.

 The SBC should include a memory card slot to expand memory and easily load an

operating system (OS) image on the card.

 The SBC should have the ability to run a high level OS (e.g., Linux, BSD, etc.) to

simplify application development.

 The SBC should be robust and allow reliable operation 24 hours a day, 7 days a

week. It should not crash after long hours of working continuously.

 The SBC should endure resetting due to power outage since there is no backup

power present in control cabinets. Power interruption should not impact the SBC's

hardware and/or software and should be able to recover from unexpected power

outages.

 Preferably, there should not be an onboard battery. However, if there is one, it

should be rechargeable.

 A software development kit (SDK) should be available with the SBC.

 The SBC should have a programmable watchdog time to monitor CPU operations,

and to restart the CPU after a pre-determined, no response amount of time.

 The SBC should be provided with general purpose input/output (GPIO) lines to

allow for direct input digital signals into the board. Changes in input signals should

generate an interrupt to make real time processing of the signals possible.

2.1.3. Selected SBC

The process of searching for SBCs for the TCU was performed in early 2012. More than

200 SBCs from various companies were considered as candidates for the TCU. After

carefully reviewing the physical and operational features of these options, two boards

were chosen for final consideration. These SBC options and their most important features

are shown in Table 1.

Table 1. List of selected SBCs

Model Processor and RAM Other Specifications Distributor Price

VDX-6354D
Vortex86DX 800MHz,

256 MB RAM

PC/104

VGA/LAN/Audio
Emac Inc. $220

PCM-3343
Vortex86DX-1GHz,

256 MB RAM

PC/104/VGA w/dual

LAN
Emac Inc. $180

 10

Since the two SBCs selected have almost the same features, both of them were

purchased for initial testing. The SBC model VDX-6354D was more flexible with

different operating systems; therefore, it was used in the development process of the

TCU, where a copy of Debian Linux distribution along with a collection of development

tools were required. The SBC model PCM-3343 comes with a faster processor at a

slightly lower price, which makes it a better fit for TCUs; therefore, it was used to build

the four prototypes currently installed.

 It is important to note that there have been several newer, low-price SBCs introduced

and made available recently to the market that can be used for the purposes of this

project. Purchasing newer SBCs was not considered because the changes in project scope

limited its application area to a few prototype units and porting already developed

applications to a new hardware platform required more time and resources. However, the

best substitute for the selected SBC (i.e., Emac's PCM-3343) is Raspberry Pi revision 2.0,

which meets all the requirements and costs approximately $35.

2.2. TCU COMPONENT PARTS

Table 2 shows the component parts required to assemble a TCU. Parts names, quantities

needed of each part, and the URLs to vendors’ web sites are included. Figures 2 to 13

show pictures of each of the entries in Table.

 11

Table 2. Components needed to assemble TCUs

No. Name Model/PN Where to buy QTY Figure#

1
Team 2GB Compact

Flash (CF) Flash Card
TG002G2NCFFX

http://www.newegg.com/Product/Product.asp

x?Item=N82E16820313247
1 2

2 PCM-3343F board

1 GHz PC

104 SBC w

Dual Lan

CF

256 ram

http://www.emacinc.com/ordering.htm 1 3

3 Enclosure HM1097-ND
http://www.digikey.com/product-

detail/en/RM2055M/HM1097-ND/2094835
1 4

4 5V Power Adapter T1038-P5RP-ND

http://www.digikey.com/product-

detail/en/EPS050100-P5RP/T1038-P5RP-

ND/2004025

1 5

5 5V LED 67-1062-ND

http://www.digikey.com/product-

detail/en/SSL-LX3044GD-5V/67-1062-

ND/270860

1 6

6 LED Holder 67-1330-ND
http://www.digikey.com/product-

detail/en/SSH-LX3050/67-1330-ND/144804
1 7

7 Fuse Holder 708-1425-ND
http://www.digikey.com/product-

detail/en/FX0462/708-1425-ND/1980782
1 8

8 Fuse 507-1277-ND
http://www.digikey.com/product-

detail/en/5MT%201-R/507-1277-ND/1009049
1 9

9 Rocker Switch SW339-ND
http://www.digikey.com/product-

detail/en/GRS-4011-0024/SW339-ND/113625
1 10

10 Power Jack SC1047-ND
http://www.digikey.com/product-

detail/en/PC722A/SC1047-ND/109404
1 11

11 Board Stand off 1902DK-ND
http://www.digikey.com/product-

detail/en/1902D/1902DK-ND/61872
6 12

12 The Interface Circuit NA
Should be made/ ordered to made (schematic

and part list are available)
1 13

http://www.digikey.com/product-detail/en/RM2055M/HM1097-ND/2094835
http://www.digikey.com/product-detail/en/RM2055M/HM1097-ND/2094835
http://www.digikey.com/product-detail/en/EPS050100-P5RP/T1038-P5RP-ND/2004025
http://www.digikey.com/product-detail/en/EPS050100-P5RP/T1038-P5RP-ND/2004025
http://www.digikey.com/product-detail/en/EPS050100-P5RP/T1038-P5RP-ND/2004025
http://www.digikey.com/product-detail/en/SSL-LX3044GD-5V/67-1062-ND/270860
http://www.digikey.com/product-detail/en/SSL-LX3044GD-5V/67-1062-ND/270860
http://www.digikey.com/product-detail/en/SSL-LX3044GD-5V/67-1062-ND/270860
http://www.digikey.com/product-detail/en/SSH-LX3050/67-1330-ND/144804
http://www.digikey.com/product-detail/en/SSH-LX3050/67-1330-ND/144804
http://www.digikey.com/product-detail/en/FX0462/708-1425-ND/1980782
http://www.digikey.com/product-detail/en/FX0462/708-1425-ND/1980782
http://www.digikey.com/product-detail/en/5MT%201-R/507-1277-ND/1009049
http://www.digikey.com/product-detail/en/5MT%201-R/507-1277-ND/1009049
http://www.digikey.com/product-detail/en/GRS-4011-0024/SW339-ND/113625
http://www.digikey.com/product-detail/en/GRS-4011-0024/SW339-ND/113625
http://www.digikey.com/product-detail/en/PC722A/SC1047-ND/109404
http://www.digikey.com/product-detail/en/PC722A/SC1047-ND/109404
http://www.digikey.com/product-detail/en/1902D/1902DK-ND/61872
http://www.digikey.com/product-detail/en/1902D/1902DK-ND/61872

12

Figure 2. Team 2GB Compact Flash (CF) Flash Card

Figure 3. PCM-3343F Board

Figure 4. Enclosure

Figure 5. 5V Power Adapter

Figure 6. 5V Power Adapter

Figure 7. LED Holder

Figure 8. Fuse Holder

Figure 9. Fuse

Figure 10. Rocker Switch

Figure 11. Power Jack

13

Figure 12. Board Stand Off

Figure 13. The Interface Circuit

2.2.1. The Interface Circuit

As explained in the requirements section, the SBC model PCM-3343 has a digital I/O

data interface also known as a general purpose input/output (GPIO) interface which

receives signals from the inductive dual-loop detector cards. Loop detector cards provide

digital signals at their outputs, with a high voltage level varying anywhere between 12

and 24 volts (V) depending on the cabinet power supply. Since the GPIO ports on most

SBCs can take up to 3.3V, a voltage conversion circuit is necessary to convert the voltage

levels provided by the cabinet and also to provide protection for the SBC against changes

in cabinet voltage.

Since no COTS solution was available for this purpose, a custom interface circuit was

designed. Figure 14 shows the schematic of the interface circuit developed. A large size

schematic of the interface circuit and a part list are provided in Appendix A.

14

Figure 14. Electrical Diagram of the Interface Circuit

The design shown in Figure 14 is based on the popular CD4050 complementary

metal–oxide–semiconductor (CMOS) to CMOS converter integrated circuit (IC). It

comes with a 3.3V Voltage regulator (part# LM 2937) to provide reference voltage for

the CD4050 and a 5V to 15V voltage converter (part# NMV0515SAC) to supply the loop

detector card inputs, so the TCU can take data even if the loop detector card outputs are

not connected to a traffic controller or a DC isolator.

The interface circuit has its own power sources and does not take excessive current

from the inductive dual-loop detector card outputs or the traffic controller. Therefore, its

operation has no effect on the performance of other devices connected to the loop

detector card outputs. The inputs voltage levels are very flexible and can range between

10-36V. The SBC data inputs are isolated and voltage fluctuations in the cabinet power

line should not cause any damage to the SBC.

A total of three interface circuits were assembled manually on prototyping PCBs for

the TCUs. If larger quantities were needed, there are companies that can make the PCB

and solder the parts. A picture of the finished prototype interface circuit and the two-

connector cables needed are depicted Figure 15. The top cable shown in Figure 15 has a

data port on one end and a connector on the other end (the latter attaches to the interface

circuit). The cable with the two black connectors is used to connect the interface circuit

into the SBC.

15

Figure 15. From Top to Bottom: (1) The Data Connector Cable, (2) The GPIO Connector Cable, and

(3) The Interface Circuit

2.3. ASSEMBLING THE TCU

This section explains the process to assemble the TCU. First, an enclosure needs to be

prepared to minimize the potential of the TCU being damaged by impact or other

environmental conditions (e.g., dust). Next, several components need to be installed

inside the enclosure. The CF card is installed next and finally all the components need to

be connected together to produce a functioning TCU.

2.3.1. Preparing the Enclosure

It should be noted that a general-purpose enclosure was used with the prototype TCUs

since the manufacturer of the SBC model PCM-3343 does not offer a compatible

enclosure.

An acrylonitrile butadiene styrene (ABS) plastic enclosure seemed to best fit the

purpose of the TCU designed for this project. ABS combines strength, rigidity, and

toughness (Acrylonitrile butadiene styrene, 2013). An ABS plastic enclosure with

detachable panels was chosen to make the customization process easier. All the holes and

slots were drilled manually according to the diagram shown in Figure 16. A Microsoft®

Visio file with all required information is also available in the attached CD that can be

used for ordering custom enclosures.

1

2

3

16

Figure 16. Drilling Guide for the Front and Rear Panels of the Enclosure

2.3.2. Installing Components in the Enclosure

The first step when installing components in the ABS plastic enclosure involves

mounting the SBC model PCM-3343 and interface circuit on the bottom part of the

enclosure. Both boards need to be secured with screws to plastic standoffs and then the

bottom of the standoffs should be glued to the bottom inside surface of the ABS

enclosure. Any industrial strength adhesive can be used for this purpose. The final

position of the boards inside the ABS enclosure is depicted in Figure 17.

FRONT PANEL

BACK PANEL

17

Figure 17. PCM-3343 SBC and Interface Circuit Mounted Inside the ABS Enclosure

Additional components should be mounted on the front and rear panels of the ABS

enclosure. The power LED, the VGA port and USB ports should be mounted on the front

panel, as depicted in Figure 18. Power jack, Ethernet port, serial data port, rocker switch

and fuse holder should be mounted on the rear panel, as depicted in Figure 19. It should

be noted that the VGA port, USB ports, and Ethernet connectors came with the SBC and

therefore they are not listed in Table 2.

Figure 18. Components Installed on Front Panel

Figure 19. Components Installed on Rear Panel

18

After installing all the components on the front and rear panels of the ABS enclosure,

they should be wired according to the diagram depicted in Figure 20.

Figure 20: Enclosure Wiring Diagram

2.3.3. Installing the CF Card

The CF card needs to be prepared according to the instructions provided in section 2.4.1

to load all the software the TCU requires for operation. Then, the CF card should be

inserted in its corresponding slot as shown in Figure 21.

Figure 21. Mounting the CF Card

19

2.3.4. Connecting Components Together

All the components installed on the front and rear panels of the ABS enclosure should be

attached to their corresponding connectors on the SBC model PCM-3343, except for the

serial data port which has a unique connector that should be attached to the interface

circuit. It might be necessary to consult the manual of the SBC model PCM-3343 before

connecting to the Ethernet and USB ports since they can be attached to various

connectors on the SBC (and in different directions).

The GPIO connector, which is part of the interface circuit, should be attached to its

corresponding connectors on the interface circuit and the SBC model PCM-3343. Figure

22 depicts all the components of the TCU properly attached to their corresponding

connectors. It is critical to verify that all connectors have been plugged correctly

(according to the SBC manual and schematics provided in attached CD) before closing

the enclosure.

Figure 22. A Completely Assembled TCU

2.4. PROGRAMMING THE TCU

In this section, the procedures for programming and configuring the TCU before first use

are presented.

2.4.1. Loading Software onto the CF Card

All the software needed for the TCU to function properly (i.e., the operating system, the

data collection program, and the data archiving scripts) is stored in a two gigabyte (GB)

CF card. This section outlines the steps required to format and install the software onto a

CF card. It is assumed that a blank CFC will be “cloned” using a completely formatted

20

CF card. For the cloning procedure, a ready-to-go disk image is provided on the attached

CD. The steps necessary to clone the CF card are as follows:

1. Insert the CF card into a card reader and connect the card reader to a computer

running Linux. It is highly recommended that the Ubuntu Linux distribution is

used in this process.

2. Before installing the image in the new and blank CF card, the CF card needs to be

formatted using Gparted. In Ubuntu, Gparted can be found at System >

Administration > Gparted. Once in Gparted, select the CF card (i.e., “/dev/sdb”).

At this point in the process, it is important to verify that the correct CF card is

selected and to verify its storage capacity. If there is any previous partition in the

CF card, it must be erased. If there is no pre-existing partition, a new partition

must be created. Right click on the partition and select “Unmount,” as depicted in

Figure 23, so Gparted can edit the partition table on the CF.

Figure 23. Unmounting the CF Card in Gparted

3. Left mouse click on the partition again to highlight it. The menu icon “Delete”

will become active. Press the “Delete” button to delete the partition, as depicted in

Figure 24.

21

Figure 24. Deleting the CFC’s Partition in Gparted

4. After clicking on the “Delete” icon, click on “Apply” to accept the changes.

Confirm the selection when prompted (see Figure 25).

Figure 25. Deleting the CFC’s Partition in Gparted (cont.)

5. After the configuration steps are completed in Gparted, a new partition must be

created in the CF card. Highlight the partition and press the “New” button. A new

window will appear. Select “ext3” from the drop down menu labeled “File

System.” Press the “Add” button to set the changes (see Figure 26) and this

window will close. Click on “Apply” to create the partition.

22

Figure 26. Creating a Partition in the CFC

6. Close Gparted and go to the Linux terminal window. In Ubuntu, the terminal

window can be accessed via Applications > Accessories > Terminal. For this

step, the user will need the provided a ready-to-go disk image. The user must

copy the disk image into the folder "/tmp/." In Ubuntu, the easiest way to copy the

file is to first copy it to the computer Desktop. Then, use the move command in

Linux terminal to move the disk image to the "/tmp/" folder by typing “mv

~/Desktop/BootCF.img /tmp/” and then press <Enter>.

7. Run the command enclosed by the red rectangle shown at the top of Figure 27.

Running this command may take several minutes and no feedback will be

provided while the process is running. This command copies the image into the

new CF card. In this example, it is assumed that the CF card image file is already

copied to the folder "/tmp/" of the local computer. If the image file is stored in a

different location, the command presented in this example must also be modified

to read the disk image from a different location.

Figure 27. Copying Image to the CF Card

Once the output shown in Figure 27 is displayed, the CF card is ready to be inserted

into the TCU. For the TCU to be completely functional, the appropriate network and

timeserver parameters need to be set. Network parameters (e.g., IP address, subnet mask,

etc.) are necessary so that the TCU can be accessed remotely. The timeserver parameters

will allow the TCU to add accurate time stamps to the MAC address records it collects.

23

2.4.2. BIOS Settings

Before using the TCU, some changes in the basic input/output system (BIOS) settings are

required. In order to access the BIOS settings page, the TCU should be connected to a

monitor (via the VGA output) and a USB keyboard should be connected to one of its

USB ports.

Press the key during startup to enter the BIOS CMOS Setup Utility. The BIOS

main menu depicted in Figure 28 will appear on the screen. Select “Standard CMOS

Features” and hit enter.

Figure 28. Main Menu for BIOS Settings

The screen depicted in Figure 29 should appear. Set the system date and system time

in this screen. Then, return to the main menu by pressing the "Esc" key.

Figure 29. Standard CMOS Features

24

From the main menu screen, select the option “Advanced Chipset Features.” The

screen depicted in Figure 30 should appear. In this screen, set “LAN2 Control” to

"[Disabled]." Then, return to the main menu by pressing the "Esc" key.

Figure 30. Advanced Chipset Features

From the main menu, choose “Save and Exit Setup” and type “Y” to confirm the

changes as depicted in Figure 31. The system will automatically reboot. More details on

BIOS settings can be found in chapter 3 of the user manual of the SBC model PCM-

3343.

Figure 31. Saving data to CMOS

25

2.4.3. Other Settings

It takes 10-15 seconds for the TCU to boot up. In order to log into the system, “root” and

“password” should be used as username and password.

2.4.3.1. Changing TCU Name and IP Address

In order to change the TCU name and IP configuration, the file system needs to be

mounted as writable first. To do this, type /sbin/rw at the prompt, as shown below, and

then hit the <Enter> key.

[root@XLinux]:/xlinux # /sbin/rw

To change the TCU’s IP address and name, use a text editor (such as the vi text editor)

to edit the file "/etc/init.d/rcS". To do this, type vi /etc/init.d/rcS and then hit the <Enter>

key.

[root@XLinux]:/xlinux # vi /etc/init.d/rcS

Next, press the <Insert> key on the keyboard to enable editing mode. On line 2,

change the “Linux_string” variable to the desired TCU name. In the example below, the

TCU's name has been set to "OSU_Freemont."

Linux_string=OSU_Fremont

Still in editing mode, use the down arrow key to scroll down to line 41 and change the

values for the IP address, network mask and the default gateway (gw), if required.

ifconfig eth0 10.107.1.156 netmask 255.255.255.0 up >/dev/null 2>&1
/sbin/route add default gw 10.107.1.1

After finishing all the necessary edits to "/etc/init.d/rcS", press the <Esc> key first,

then press <Shift>+<:> and type "wq". Finally, press the <Enter> key to save the changes

and to exit from the vi text editor. Reboot the TCU by typing reboot to have the changes

take effect.

To exit without saving changes to "/etc/init.d/rcS", press <Shift>+<:> and type "q!".

26

2.4.4. Accessing the TCU Remotely

To access the TCU remotely or to log in without having a keyboard and monitor

connected to the TCU, a secure shell (SSH) client like PuTTY can be used on computers

running Windows. On Linux/Unix/Mac systems, the SSH command in a terminal can be

used instead.

Network settings (e.g., IP, netmask, etc.) should be setup properly on the TCU and the

computer connecting to the TCU should be connected to the same network the TCU is

connected. PuTTY is a free SSH and Telnet client for Windows that can be downloaded

from the following URL: http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe. If the

above link does not work, navigate to the download page here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html and try other mirrors.

PuTTY does not require installation. After download, double click on the executable

file to run it. Figure 32 depicts the main screen of PuTTY.

Figure 32. Main Screen of PuTTY

In the field labeled "Host Name", enter the TCU’s IP address. Choose a name for the

connection you are creating (e.g., TCU), enter it into the saved sessions field, and then

click the "Save" button. The name "TCU" should be added to the list of saved sessions.

Select the connection just created (i.e., TCU), and click “Open”. A new black window

should appear after a few seconds with the prompt “login as”. Type "root" and then press

<Enter>. After a few seconds, a prompt will appear requesting a password. Enter

“password” and then press <Enter>. Please note that when entering the password, no

characters (not even asterisks) are displayed on the window and the cursor does not move

at all. It may look like it is not capturing the password being typed, but it does. If an error

is made while entering the password, press <Backspace> a few times to make sure you

have erased all the characters you had entered and enter the password again.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

27

2.5. INSTALLING THE TCU IN THE LOOP DETECTOR CABINET

Complete the following steps to install the TCU in the loop detector cabinet:

1. Place the TCU on a shelf in the loop detector cabinet. It is important that the TCU is

placed where it does not interfere with the operation of other devices already

installed in the cabinet. The TCU does not require ventilation and there are no air

vents on the enclosure. However, the TCU should not block the air vents of other

devices or placed where it may heat up due to the operation of other devices (e.g.,

on top of a traffic controller or behind a card rack).

2. Install the main harness of the TCU on the back of the input file (card rack)

according to the wiring diagram instructions shown in Table 3. Table 3 provides all

the wiring information for each pin of the header on the interface circuit and their

corresponding positions on the serial DB9 connector on the back of the TCU. The

wire colors noted on Table 3 correspond to the harness, which is provided with the

prototype TCUs. If other DB9 harnesses are used, the color codes may be different

and the connections have to be made according to the DB9 connector positions.

Table 3. Wiring diagram

Channel Harness
DB9 pin

Position
PCB Header PCB

DB9 pin

Position
Harness Channel

 NC NC NC ▪ ▪ GND 1 Black Common

CH1_M Green 6 P 0.0 ▪ ▪ P 0.4 2 Brown CH3_M

CH1_S Blue 7 P 0.1 ▪ ▪ P 0.5 3 Red CH3_S

CH2_M Purple 8 P 0.2 ▪ ▪ P 0.6 4 Orange CH4_M

CH2_S Grey 9 P 0.3 ▪ ▪ P 0.7 5 Yellow CH4_S

Table 4 provides further information on the terminology used in Table 3. Each

channel corresponds to a set of two loops. These channel numbers are also recorded

in the TCU’s output data file for every vehicle captured. It does not make any

difference for the TCU if each channel is connected to a set of loops on northbound

or southbound lanes, but it is important to connect upstream and downstream loops

correctly according to the wiring diagram or no data will be captured.

Table 4. Description of conventions

Lane number Channel Loop

1 CH1_M Loop 1, Upstream (Lead)

1 CH1_S Loop 1, Downstream (Lag)

2 CH2_M Loop 2, Upstream (Lead)

2 CH2_S Loop 2, Downstream (Lag)

3 CH3_M Loop 3, Upstream (Lead)

3 CH3_S Loop 3, Downstream (Lag)

4 CH4_M Loop 4, Upstream (Lead)

4 CH4_S Loop 4, Downstream (Lag)

28

In order to keep the data captured by the TCU as accurate as possible, the output of

the loop detector cards should be inputted into the TCU. Therefore, it is

recommended to connect the data harness as close as possible to the loop detector

card outputs (card rack). In case the signal source for the loops is located far away

from the TCU’s installation location and DC isolators are used to boost the signal,

the TCU should be wired to the DC isolator inputs (i.e., where the DC isolator is

supplied with the signal from the loop detector cards) as opposed to the DC isolator

outputs (i.e., where the DC isolator provides amplified signal and the traffic

controller and other devices are connected). The interface circuit is designed to be

very sensitive and can pick signals as low as 8V. It also does not cause any voltage

drops on the signal line, therefore it should not affect other devices, which are

supplied with the same signal.

3. Plug the main harness connector to the data connector on the back of the unit and

secure it.

4. Plug the power adapter to the 120V socket.

5. Plug the power cord into the power jack on the back of the TCU.

6. Switch the TCU on, and make sure the power LED lights up.

2.6. DOWNLOADING DATA FROM THE TCU

In this section, two methods are presented for downloading data from the TCU. The first

method is suitable for onsite data retrieval or when the data needs to be downloaded

manually. The second method is based on data retrieval scripts that are provided with the

TCU and are useful when unattended remote data retrieval is required.

Please note that in order to use any of the presented methods, network settings (i.e., IP

address and subnet mask) should be configured properly on the TCU. A computer with

the Windows operating system needs to be connected to the same network that TCU is

connected.

2.6.1. Data Archiving Scripts

The TCU is programmed to archive and compress the output data files in order to make

automated file retrieval easier and faster. This section provides a short description on how

these scripts operate.

The scripts are standard Linux shell scripts and are stored in the following paths:

 /sbin/archive

 /sbin/maintain

Note that the file system (/) is being mounted as read-only to protect the TCU against

unexpected power failures. Therefore, in order to enable write operations on the disk, you

29

need to run "/sbin/rw" scripts (as described in the X-Linux manual) to re-mount it as

writable.

The data collection software creates a text file every day to store that data for that day

data in:

 /disk/data/*.txt (e.g., Dec04-12.txt)

The archiving script "/sbin/archive" runs every day five minutes after midnight (i.e.,

00:05) and results in the following:

 The data file with the data collected from the prior day is compressed.

 The compressed file is appended (or copied, if no older archive is available) to

the archive stored in /disk/data/archive and named as "Archived_`date +"%m-

%d-%y"`.txt.gz" (e.g., Archived_Dec04-12.txt.gz).

On the 30th day of every month at 23:01, the maintenance script runs and result in the

following:

 The old archive (ideally data from the previous two 2 months) stored in

"/disk/data/archive/old" is removed.

 The current archive is moved to "/disk/data/archive/old".

Based on the above explanation, the best time to download data from the TCUs is on

the 30
th

 day of each month between 00:10 and 22:45 to avoid retrieving redundant data

(e.g., copying files with overlapping data). So, if the files are downloaded during the

mentioned time window (e.g., 30
th

 day at 2:00), each file will contain data captured from

the beginning of the 31
st
 day of the previous month until the end of the 30

th
 day of the

current month. Please note that the time on the TCU is not being synchronized and,

therefore, daylight saving changes have not been applied to them.

All these scripts are scheduled using "crontab" and in order to change the schedule,

you need to edit "/crontab/root". The changes may not be effective unless the crontab

service or the TCU is restarted.

2.6.2. Manual Data Retrieval

This section provides instructions to manually download data from the TCU data using

WinSCP. WinSCP is a free file transfer protocol (FTP) client for Windows.

1. Download WinSCP from http://winscp.net/eng/download.php. After downloading

and unzipping the WinSCP, go to step 2 to create a connection.

2. To create a connection, open WinSCP to see the main screen depicted in Figure

33. Click the “New” button on the top right of the main program window. A new

window will appear (see Figure 34) and the TCU’s IP address along with username

http://winscp.net/eng/download.php

30

and password must be entered. The default username is "root" the password is

"password". Click "Save…" when done.

Figure 33. WinSCP Main Program Window

Figure 34. Parameter Values to Create a Connection in WinSCP

3. Select the connection just created and click “Login.”

4. To copy files from the TCU to the computer, complete the following steps:

a. After a few seconds, a connection should be established. Accept any messages

that show up during the logon process.

b. A new window will appear with two frames. The right frame shows the files and

directories available on the TCU. The left frame lists the files and directories on

your computer.

c. In the right frame, click on "disk" and then "data directories" to navigate to the

subdirectory "/disk/data/archive".

31

d. Select all files in "/disk/data/archive" either by holding the <Ctrl> or the <Shift>

keys and clicking on files.

e. In the left frame, navigate to the directory in the computer where the selected

files from the TCU must be saved.

f. Drag the selected files from right frame to the left frame.

g. A window will appear to ask for confirmation to copy the files. Click “Copy”

and wait until all files are downloaded.

h. Verify that all the files were copied to the computer and can be opened.

5. Close WinCSP to automatically terminate the connection with the TCU.

2.6.2. Automated Data Retrieval Using Script

Data can also be retrieved from the TCU with the use of an automatic retrieval script. The

script is an MS DOS/Windows batch file that can be schedule to run automatically on a

Windows-based computer and it is depicted in Figure 35.

rem Set variables below
rem manually run for the first time c:\82ndatBurnside>pscp -scp -unsafe -l
root 10.107.1.155:/disk/data/archive/*.gz c:\82ndatBurnside and manually
press y to accept a cached fingerprint

rem OSU box IP address:
set ip=10.107.1.155
rem OSU box root password:
set password=password
pscp -v -scp -unsafe -l root -pw %password% %ip%:/disk/data/archive/*.gz
c:\82ndatBurnside

pause

Figure 35. MS DOS/Windows Batch File for Automatic Data Retrieval from the TCU

The script requires a tool named pscp that can be downloaded at:

http://www.nber.org/pscp.html. A folder should be created for storing the downloaded

files (e.g., c:\82ndatBurnside) and an instance of pscp has to be copied there as well.

Data files stored in the TCU are labeled by date and therefore it is not necessary to

rename them to avoid overwriting the old ones. The compressed files extracted from the

TCU have the extension .gz and can be uncompressed using almost any popular archiving

software such as the freeware "7zip". The script is shown below and a copy is also

available in the attached CD.

http://www.nber.org/pscp.html

32

3.0 DATA COLLECTION ALGORITHM AND

SOFTWARE

In this chapter, the procedures implemented in the TCU software that are used to estimate

vehicle length are described. A description and justification of the length estimates

utilized is presented first. The remainder of the chapter documents the TCU code.

3.1 DUAL LOOP GEOMETRY

The basis for the algorithm used in this project to calculate the length and speed of a

vehicle using signals collected from inductive dual-loops is an algorithm developed by

researchers in the civil engineering department at the University of Washington (N.

Nihan, Wang, & Zhang, 2005). The configuration of dual inductive loops within a single

lane is shown in Figure 36. There is an upstream loop (M Loop) and a downstream loop

(S Loop). There are wires that attach loops to a loop detector card installed in a traffic

cabinet. A loop detector card detects changes in magnetic field caused by vehicles or any

metal surface that enters the loops’ area and translates them into on and off signals. When

a vehicle drives over a loop, the loop detector card outputs a signal, whose length (in time

units) ideally corresponds to the amount of time the vehicle has been present on each of

the loops. In the notation used here, TXON refers to the moment that the signal on loop X

changes to active (or ON level) and TXOFF is the moment that the X loop signal returns

to inactive (or OFF) level, where X = M or S.

Figure 36. Dual Loop Detection System

33

The notation used in the description of the length estimates computed from inductive

loop data is shown in Table 5.

Table 5. Notation used in the calculation of vehicle length estimates

Parameter Description

TMOFF Off-time for the M-Loop

TMON On-time for the M Loop

TSOFF Off-time for the S-Loop

TSON On-time for the S Loop

d Distance between the end of the M Loop and the beginning of the S

Loop

LL Length of a single loop (in the direction of vehicle travel), Assumed to

be the same for both loops

 The notation in Table 5 for loop ON and OFF times is applicable for a single vehicle

and, assuming no data collection errors, TMON < TMOFF < TSON < TSOFF. Different

vehicle speed estimates can be computed from these data. These speed estimates assume

that a pairing of ON and OFF times that belong to the same vehicle is straightforward to

identify as long as stop and go congestion is not encountered. Three different speed

estimates can be computed, as follows:

 (3.1)

 (3.2)

 (3.3)

 Nihan, Wang, & Zhang (2005) use SAVG to estimate vehicle lengths from the M loop

ON time and the S loop ON time using the following formulas:

 (3.4)

 (3.5)

 In their method, the vehicle length estimate is calculated by averaging equations 3.4

and 3.5, as follows:

 (3.6)

The prior formulas assume that the loop detector data passes several data validity tests.

However, many factors affect the performance of loop detector systems, so multiple data

validity tests are conducted in the Nihan, Wang, & Zhang (2005) method. When a data

34

validity test is not passed, an error flag is generated along with an alternate speed

estimate (SWSDOT) and vehicle length estimate (LWSDOT) that depends on the type of data

error encountered. Either LWSDOT =LM or LWSDOT =Ls will be used as length estimates

when a data validity test is not passed.

These speed and length estimates assume free flow traffic with relatively constant

speed for vehicles as they travel over the loops. On arterials, the free flow traffic

assumption is not always met, thus four alternative length estimates were developed and

tested that may perform better in an environment where acceleration and deceleration

over the loops may occur as vehicles travel over the loops.

Length Estimate 1: Calculating the length based on the time a vehicle enters the

first loop and leaves the second loop.

Length= (TSOFF-TMON) - (d+2LL) (3.7)

Length Estimate 2: Calculating the length based on the time a vehicle leaves the

first loop and enters the second loop.

Length= (TSON-TMOFF) - d (3.8)

Length Estimate 3: Calculating the length based on the time a vehicle enters the

first loop and leaves the first loop.

Length= (TMOFF-TMON) -LL (3.9)

Length Estimate 4: Calculating the length based on the time a vehicle enters the

second loop and leaves the second loop.

Length= (TSOFF-TSON) –LL (3.10)

In addition to the estimators just described, Itekyala (2010) proposed an estimator

called the Constant Acceleration-based Vehicle Classification (CAVC) model to estimate

vehicle length in congested conditions. The development of the CAVC model assumed

that a vehicle moves across the dual-loop detectors at variable speed resulting from

constant acceleration. The length estimator is:

 (

) (

 – –

 (–)
) (3.11)

Where the notation not previously defined is:

OnT1 - Total vehicle on-time over the M loop.

OnT2 - Total vehicle on-time over the S loop.

t - Time taken for vehicle to travel from the beginning of M loop to the beginning of the

S loop.

35

To evaluate the accuracy of the four new length estimators and LCAVC, the length

estimate generated by each estimator was compared to a known vehicle length under

different scenarios in a deterministic simulation. Assuming a known loop length (LL),

and the distance between loops (d), different scenarios were created by changing the

vehicle speed when entering the first loop (V0), the vehicle speed when leaving the

second loop (V1), and the known length of the vehicle. For each scenario, the values for

TSON, TSOFF, TMON, and TMOFF could be calculated, from which the vehicle length

estimates using the different estimators could be calculated. Scenarios were created by

using different realistic vehicle lengths, and values for V0 and V1 that were varied in 5

MPH increments. Table 5 shows the results of 15 different scenarios.

A total of 149 scenarios were created. The scenarios were partitioned into three

acceleration categories that subjectively appeared to have a single estimator that

performed the best (i.e., having the largest number of scenarios where the estimator was

the most accurate) with respect to the absolute difference from the actual vehicle length.

The three acceleration categories are less than -20 ft/sec
2
, between -20 ft/sec

2
 and 20

ft/sec
2
,

and greater than 20 ft/sec

2
. For scenarios with acceleration greater than 20 ft/sec

2
,

the new length estimator 3 performed the best. For acceleration less than -20 ft/sec
2

, the

new length estimator 4 performed the best. When acceleration is between 20 and -20

ft/sec
2
, the LV performed the best.

As a result of this testing, the Nihan, Wang, & Zhang (2005) method is used when the

acceleration estimated from the loop detector data is between -20 ft/sec
2
 and 20 ft/sec

2
,

estimator 3 is used when the acceleration estimated from the loop detector data is greater

than 20 ft/sec
2
, and length estimator 4 is used when the acceleration estimated from the

loop detector data is less than -20 ft/sec
2
. In some cases, the Nihan, Wang, & Zhang

(2005) method will return LS or LM instead of LV when the acceleration estimated from

the loop detector data is between -20 ft/sec
2
 and 20 ft/sec

2
, but these cases will typically

occur with large accelerations or decelerations combined with long vehicle length, and

should be infrequent.

36

Table 6. The results of 15 scenarios to evaluate vehicle length estimators

Scenario Parameters

New Length Estimators

(feet)

Existing Length Estimators

(feet)

Run

V0

(MPH)

V1

(MPH)

Known Length

(feet)
1 2 3 4 LV LM LS LCAVC

1 10 35 15 18.09 14.83 15.3 14.83 16.58 10.61 22.55 15.3

2 5 35 17 22.62 17.21 16.59 17.2 19.77 11.33 28.2 16.6

3 5 35 15 20.38 14.81 15.39 14.81 17.74 9.68 25.8 15.39

4 10 35 12 14.86 11.36 13.14 11.36 13.56 8.04 19.07 13.11

5 5 35 12 16.97 11.29 13.5 11.3 14.69 7.23 22.14 13.48

6 35 0 20 29.91 17.92 20.91 17.92 24.67 36.62 12.71 20.89

7 35 5 20 25.98 18.32 20.88 18.32 22.79 31.75 13.83 20.86

8 35 0 24 34.66 19.69 25.98 19.69 28.75 41.59 15.9 25.94

9 35 5 24 30.41 20.51 25.91 20.51 26.81 36.41 17.21 25.87

10 35 0 27 38.19 20.94 29.87 20.94 31.8 45.27 18.33 29.82

11 35 5 27 33.71 22.07 29.77 22.07 29.82 39.86 19.77 29.72

12 35 0 30 41.7 22.14 33.83 22.14 34.85 48.92 20.78 33.76

13 35 5 30 37 23.59 33.69 23.59 32.83 43.29 22.36 33.62

14 35 0 32 44.04 22.91 36.5 22.91 36.88 51.33 22.42 36.42

15 35 5 32 39.19 24.57 36.34 24.57 34.82 45.55 24.09 36.26

37

3.2 TCU SOFTWARE

In this section, the procedures implemented in the TCU data collection software are

described. The data collection software was developed in the C programming language,

and compiled using the GNU Compiler Collection in Linux. The binary executable files

are included in the TCU disk image file and the full source is provided in the attached

CD. Since there are C compilers (and cross compilers) for every platform (i.e., UNIX,

Windows, Arm, etc.), the data collection software can be compiled and used in almost

any platform.

3.2.1. Constants

As depicted in Figure 37, several constants are listed at the beginning of the data

collection program. These constants are used for calculating speed and length, as well as

other conditions such as error flags.

#define Dist 16 //Distance between the two loops in feet
#define Srate 681818.182 //ratio to convert ft/usec to MPH
#define LL 6 //Loop length in feet
#define Smin 5 //Min speed: 5 MPH
#define Smax 100 //Max speed: 100 MPH
#define Lmin 5 //Min vehicle length: 5 ft.
#define Lmax 110 //Max vehicle length: 110 ft.
const double Tonmin=75000; //Min on time: 75 ms
const double Tonmax=1.583E6; //Max on time: 1583 ms
const double Tofmin=170000; //Min off time: 170 ms
const double Tofmax=0; //Max off time: 0 ms
const double Temin=109000; //Min elapsed time: 109 ms
const double Temax=2.182E6; //Max elapsed time: 2182 ms
const double DTe=.10; //Delta T elapsed threshold: 10%
const double DTo=.10; //Delta T on threshold: 10%
char fpath[50]="//disk//data//";
const double wait=5E3; //polling interval in micro seconds

Figure 37. Constants used by the TCU's Data Collection Software

The constants for the distance between the loops (Dist) and the constant for the length

of the loops (LL) are the most notable. These constants are set to the standard values used

by the state of Oregon, i.e., 16 feet and 6 feet, respectively.

Additional constants include fpath which is set to where the output text file is stored,

and wait which represents the rate at which the software checks the data port for signal

changes. The latter constant is currently set to 5 milliseconds, which means that signals

are collected from the inductive dual-loop detectors at a rate of 200 times per second.

The rest of the constants are used for error flag calculation and are explained in N. L.

Nihan at al. (2005).

38

3.2.2. Procedures

The program consists of nine main procedures. Each procedure is presented and

explained briefly in the next sections.

3.2.2.1. Procedure main()

The procedure main(), depicted in Figure 38, is the startup procedure for the TCU's data

collection software. In this procedure, the TCU's data port is being refreshed in the

defined intervals by calling the scan() procedure. If the data on the port has changed, then

the time() procedure is called to record loop ON and OFF times. The time and data are

processed by the procedure calc().

void main(void)
{
int c = 255;
_Bool stop=0;
iopl(3);
/* set GPIO port0[7-0] as input mode */
outb(0x00,0x98);
while (!stop)
{
if (c!=scan())
{
c = calc(scan(),c,time());
}
else
usleep(wait);
}
iopl(1);
}

Figure 38. Procedure main()

3.2.2.2. Procedure scan()

The scan() procedure, depicted in Figure 39, scans the GPIO port 0 and returns data as an

integer value.

int scan(void)
{
int c;
/* read data from GPIO port0 */
c = inb(0x78);
return c;
}

Figure 39. Procedure scan()

39

3.2.2.3. Procedure time()

The time() procedure, depicted in Figure 40, records the system time and returns a

timeval structure. The time produced by this procedure is used in calculating loop on and

off times.

struct timeval time(void)
{
struct timeval output;
gettimeofday(&output, NULL);
return output;
}

Figure 40. Procedure time()

3.2.2.4. Procedure calc()

The calc() procedure, depicted in Figure 41, scans and processes four channels. Each

channel corresponds to a pair of loops (i.e., two bits of data), but more channels can be

scanned and processed if necessary. The calc() procedure first compares the current state

of the data port against its old state and determines whether or not the channel (or

channels) have changed. If a change in state is detected, the calc() procedure calls the

process () procedure to process the changes.

int calc(int new, int old, struct timeval t)
{
int o,n;

//evaluating 1st channel
o = old & 3;
n = new & 3;
if (o!=n)
{
o = 4*o+n;
process(0,o,t);
}
//evaluating 2nd channel
o = (old & 12)/4;
n = (new & 12)/4;
if (o!=n)
{
o = 4*o+n;
process(1,o,t);
}

 //evaluating 3rd channel
o = (old & 48)/16;
n = (new & 48)/16;
if (o!=n)
{
o = 4*o+n;
process(2,o,t);
}
//evaluating 4th channel
o = (old & 192)/64;
n = (new & 192)/64;
if (o!=n)
{
o = 4*o+n;
process(3,o,t);
}
return new;
}

Figure 41. Procedure calc()

40

3.2.2.5. Procedure process()

The procedure process(), depicted in Figure 42, processes the data collected from the

inductive dual-loop detectors according to the type of change detected. In each case, the

required data are calculated and in case the detected vehicle had finished traversing both

loops (case 7), the speed() and the length() procedures are called to calculate speed and

length, and the procedures Eflag() and Cflag() are called to calculate error flags. Then, all

data are recorded in the data file and also displayed on the console. The data file is

opened and closed every time a record needs to be added to minimize the chance of file

corruption and data loss in case of power failure.

void process(int i, int input, struct timeval t)
{
FILE *fp;
char buf[30];
char fname[15];
float l;
switch (input)
{
 case 14: //1st channel activated
 TS1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec);
 TON1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec);
 break;
 case 11: //1st channel deactivated
 TS1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TS1[i];
 TOF1[i] = (t.tv_sec%1000)*1E6+t.tv_usec;
 break;
 case 8: //2nd channel activated + 1st still active
 TM1[i] = (t.tv_sec%1000)*1E6+t.tv_usec;
 if (TON1[i]>0)
 {
 TON1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TON1[i];
 }
 break;
 case 1:
 TS1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TS1[i];
 break;
 case 9: //1st channel deactivated & 2nd channel activated (swap)
 TS1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TS1[i];
 TM1[i] = (t.tv_sec%1000)*1E6+t.tv_usec;
 TON1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TON1[i];
 TOF1[i] = (t.tv_sec%1000)*1E6+t.tv_usec;
 break;
 case 13: //2nd channel activated
 TM1[i] = (t.tv_sec%1000)*1E6+t.tv_usec;
 if (TON1[i]>0)
 {
 TON1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TON1[i];
 }
 break;
 case 7: //2nd channel deactivated
 if (TON1[i]>0)
 {

41

 TM1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TM1[i];
 TOF1[i] = ((t.tv_sec%1000)*1E6+t.tv_usec)-TOF1[i];
 strcpy(buf,ctime(&t));
 buf[strlen(buf)-1]='\0';
 Eflag (i);
 SP = speed(i);
 l = length(i,SP);
 Cflag(i,SP,l);
 printf ("%s Channel %d Speed %3.2f MPH Length(i) %3.2f VS l

%3.2f ft. Error %d TS=%1.0f TM=%1.0f TON=%1.0f
TOff=%1.0f\n",buf,i+1,SP,length(i,SP),l,flag[i], TS1[i], TM1[i], TON1[i],
TOF1[i]);

 strftime(fname, 15, "%b%d-%y.txt", localtime(&t));
 sprintf (fpath+14, fname);
 fp = fopen(fpath, "a"); //opening the file
 fprintf(fp,"%s Channel %d Speed %3.2f MPH Length %3.2f ft.

Error %d TS=%1.0f TM=%1.0f TON=%1.0f
TOff=%1.0f\n",buf,i+1,SP,length(i,SP),flag[i], TS1[i], TM1[i], TON1[i],
TOF1[i]);

 fclose(fp); //closing the file
 TS1[i] = 0;
 TM1[i] = 0;
 TON1[i] = 0;
 TOF1[i] = 0;
 }
 else
 {
 TS1[i] = 0;
 TM1[i] = 0;
 TON1[i] = 0;
 TOF1[i] = 0;
 }
 break;

 default: //none
 TS1[i] = 0;
 TM1[i] = 0;
 TON1[i] = 0;
 TOF1[i] = 0;
 break;
}
}

Figure 42. Procedure process()

42

3.2.2.6. Procedure speed()

The procedure speed(), depicted in Figure 43, calculates a the speed of a vehicle based on

the possible inconsistencies detected in the data captured from both inductive dual-loop

detectors. This procedure was developed by Nancy L. Nihan, Wang, Cheevarunothai, &

Northwest (2006). In case no error is detected, the speed is calculated based on an

average of the ON and OFF times of each loop.

float speed(int i)
{
float son,sof;
double ton;
int f;
if ((flag[i] & 124)==0)
{
 son = (float)(((Dist+LL)/TON1[i])*Srate);
 sof = (float)(((Dist+LL)/TOF1[i])*Srate);
 return ((son+sof)/2);
}
else if ((flag[i] & 124)==64)
{
 if (SP>0)
 {
 ton = (((Srate*(Dist+LL))/SP)+0.5);
 if (fabs(TON1[i]-ton)<fabs(TOF1[i]-ton))
 {
 son = (float)(((Dist+LL)/TON1[i])*Srate);
 sof = (float)(((Dist+LL)/ton)*Srate);
 return ((son+sof)/2);
 }
 else
 {
 sof = (float)(((Dist+LL)/TOF1[i])*Srate);
 son = (float)(((Dist+LL)/ton)*Srate);
 return ((son+sof)/2);
 }
 }
 else
 {
 son = (float)(((Dist+LL)/TON1[i])*Srate);
 sof = (float)(((Dist+LL)/TOF1[i])*Srate);
 return ((son+sof)/2);
 }
}
else
{
f = (((flag[i] & 4)/4)|((flag[i] & 8)/8))+ (((flag[i] & 16)/8)|((flag[i] &

32)/16));
switch (f)
{
 case 1:
 if (SP>0)
 {

43

 ton = (long)(((Srate*(Dist+LL))/SP)+0.5);
 if (abs(TOF1[i]-ton)<DTe)
 {
 sof = (((Dist+LL)/TOF1[i])*Srate);
 son = (((Dist+LL)/ton)*Srate);
 return ((son+sof)/2);
 }
 else
 {
 return (((Dist+LL)/TOF1[i])*Srate);
 }
 }
 else
 {
 return (((Dist+LL)/TOF1[i])*Srate);
 }
 break;
 case 2:
 if (SP>0)
 {
 ton = (long)(((Srate*(Dist+LL))/SP)+0.5);
 if (abs(TON1[i]-ton)<DTe)
 {
 son = (((Dist+LL)/TON1[i])*Srate);
 sof = (((Dist+LL)/ton)*Srate);
 return ((son+sof)/2);
 }
 else
 {
 return (((Dist+LL)/TON1[i])*Srate);
 }
 }
 else
 {
 return (((Dist+LL)/TON1[i])*Srate);
 }
 break;
 case 3:
 if (SP>0)
 {
 return (SP);
 }
 else
 {
 return 0;
 }
 break;
}
}
}

Figure 43. Procedure speed()

44

3.2.2.7. Procedure length()

The procedure length(), depicted in Figure 44, estimates the length of the vehicle detected

by the inductive dual-loop detectors. The procedure length() was developed specifically

for the needs of this project and is based on the data captured from two test locations in

Portland, Oregon. In this procedure, the acceleration of the vehicles as they travels past

the two loops is estimated. If the acceleration is more than an experimental threshold, a

length calculation method other than averaging is employed.

float length(int i, float s)
{
int f;
float ls,lm;
float ss;

f = (((flag[i] & 128)/128)|((flag[i] & 256)/256))+(((flag[i] & 512)/256)|((flag[i]

& 1024)/512));
ss = s/Srate;
switch (f)
{
 case 0:
 ls = (float)((TS1[i]*ss)-LL);
 lm = (float)((TM1[i]*ss)-LL);
 return ((ls+lm)/2);
 break;
 case 1:
 return (float)((TM1[i]*ss)-LL);
 break;
 case 2:
 return (float)((TS1[i]*ss)-LL);
 break;
 case 3:
 ls = (float)((TS1[i]*ss)-LL);
 lm = (float)((TM1[i]*ss)-LL);
 return ((ls+lm)/2);
 break;
}
}
void Cflag(int i,float s, float l)
{
if (s < Smin) { flag[i] = flag[i]+4096;}
if (s > Smax) { flag[i] = flag[i]+8192;}
if (l < Lmin) { flag[i] = flag[i]+16384;}
if (l > Lmax) { flag[i] = flag[i]+32768;}
}

Figure 44. Procedure length()

45

3.2.2.8. Procedure Eflag()

The Eflag() procedure, depicted in Figure 45, calculates the error flags used by the speed

calculation procedure and also written in the output data file. The thresholds for each

error type are defined at the beginning of the program.

void Eflag(int i)
{
//sets error flag
flag[i] = 0;
if (TON1[i] < Temin) { flag[i] = flag[i]+4;}
if (TON1[i] > Temax) { flag[i] = flag[i]+8;}
if (TOF1[i] < Temin) { flag[i] = flag[i]+16;}
if (TOF1[i] > Temax) { flag[i] = flag[i]+32;}
if ((fabs(TOF1[i]-TON1[i])/TON1[i])> DTe) { flag[i] = flag[i]+64;}
if (TS1[i] < Tonmin) { flag[i] = flag[i]+128;}
if (TS1[i] > Tonmax) { flag[i] = flag[i]+256;}
if (TM1[i] < Tonmin) { flag[i] = flag[i]+512;}
if (TM1[i] > Tonmax) { flag[i] = flag[i]+102;}
if ((fabs(TM1[i]-TS1[i])/TS1[i])> DTo) { flag[i] = flag[i]+2048;}
if ((TON1[i] == 0) || (TOF1[i] == 0)) { flag[i] = flag[i]+262144;}

}

Figure 45. Procedure Eflag()

3.2.2.9. Procedure Cflag()

The Cflag() procedure, depicted in Figure 46, calculates some additional error flags that

depend on calculated speed. This procedure has to be called after the speed() procedure

since it requires vehicle speed as input.

void Cflag(int i,float s, float l)
{
if (s < Smin) { flag[i] = flag[i]+4096;}
if (s > Smax) { flag[i] = flag[i]+8192;}
if (l < Lmin) { flag[i] = flag[i]+16384;}
if (l > Lmax) { flag[i] = flag[i]+32768;}
}

Figure 46. Procedure length()

46

4.0 TRUCK COUNT UNIT ACCURACY ASSESSMENT

This chapter documents the performance testing of the TCU to validate its accuracy in

estimating vehicle speed and length. The TCU platform developed was tested at two

different locations on Portland, Oregon.

4.1. PROCEDURES AND ANALYSIS METHOD

The accuracy of the speeds and lengths generated by the TCU were assessed by

comparison to the corresponding speeds and lengths obtained from high-speed video

analysis. These videos were recorded at the two locations where dual inductive loops

monitored by TCUs were installed in the city of Portland:

 I-205 northbound lanes near Stafford Road (Location 1),

 All lanes on 82
nd

 Avenue approximately 0.1 miles south of the 82
nd

 Avenue

and Freemont intersection (Location 2).

The TCUs were installed in control cabinets near the dual loop installations at:

 The on-ramp to I-205 northbound from Stafford Road, exit

 82
nd

 Avenue and Freemont.

During the visits to all locations, the length of the loops and the distance between

loops were measured. To help with these measurements, chalk lines perpendicular to the

road were drawn on the road shoulder that were aligned with the beginning and end of

each loop. Distances were then measured from these chalk lines. Stakes were used to

mark the beginning of the first loop and end of the second loop to assist in the video

analysis. Figure 47 shows the chalk lines and the stakes used for measurement and video

analysis at location 1.

47

Figure 47. I-205 Northbound Dual Inductive Loop Markings

At all locations, the video camera was placed at an imaginary line perpendicular to the

road and exactly in the middle of the two stakes. The high-speed video camera was able

to record 240 frames per seconds for a maximum duration of 13 minutes. The high

number of frames per second allowed accurate estimation of vehicle speeds.

By counting the number of video frames required to record a vehicle moving between

the two stakes, vehicle speed could be estimated from the video using the following

formula:

 Vehicle travel time between the two stakes =

 (4.1)

Estimated Speed

 =

 (4.2)

Knowing the distance between the two stakes, vehicle lengths could be estimated from

the video using the following formula:

Estimated Length =

 (4.3)

After matching the TCU speed and length estimates with the corresponding vehicles in

the video, the percentage differences between the TCU speed and length estimates and

the video analysis speed and length estimates for each vehicle were calculated.

48

The loop detector sensitivity for detecting objects is adjustable on an integer scale

from one to seven, with a higher value resulting in higher sensitivity. The default

sensitivity level for all three locations was four. The effect of sensitivity level on the

length and speed estimates was tested at location 1. Sensitivity levels of three, four, and

five were tested.

After estimating vehicle lengths, the vehicles could be classified into different vehicle

classes. ODOT uses the following length-based classes:

 Passenger vehicles (PV) - less than 20 feet.

 Single unit trucks (SU) - between 20 and 35 feet.

 Combination trucks (CU) - between 36 and 60 feet.

 Multi-trailer trucks (MU) - greater than 61feet.

 Corresponding vehicles from the video analysis and TCU data were classified and the

counts in the various classes were compared.

4.2. LOCATION 1 RESULTS

Table 7 and Table 8 below show the average differences between the speed and length

estimates from the video analysis, and the TCU speed and length estimates for each

sensitivity level.

Table 7. Average differences at location 1 between the video analysis and TCU length estimates

Sensitivity

Level

Number of Vehicles

in Video

Number of

Vehicles Analyzed

Avg. Length

Difference (ft)

3 517 93 -0.69

4 513 30 -0.74

5 484 91 5.22

Table 8. Average differences at location 1 between the video analysis and TCU speed estimates

Sensitivity

Level

Number of Vehicles

in Video

Number of

Vehicles Analyzed

Avg. Length

Difference (ft)

3 517 93 -0.038

4 513 30 -1.164

5 484 91 -2.41

49

Figure 48, Figure 49 and Figure 50 depict histograms of length errors for each loop

detector sensitivity level. Figure 51, Figure 52 and Figure 53 depict histograms of speed

errors for each loop detector sensitivity level.

Figure 48. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 3

Figure 49. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 4

0 1 0
3

5

14

33

26

8

0
3

0
0

10

20

30

40

50

60

F
re

q
u

e
n

cy

Bin

Frequency

1

10

18

1 0
0

10

20

30

40

50

60

-5 0 5 10 More

F
re

q
u

e
n

cy

Bin

Frequency

50

Figure 50. Histogram of Length Errors (in Feet) – Location 1, Sensitivity 5

Figure 51. Histogram of Speed Errors (in Miles per Hour) – Location 1, Sensitivity 3

0 2

49

35

7

0
0

10

20

30

40

50

60

-5 0 5 10 15 More

F
re

q
u

e
n

cy

Bin

Frequency

0

13
15

19
17 18

9

1 1 0
0

10

20

30

40

50

60

-6 -4 -2 0 2 4 6 8 10 More

F
re

q
u

e
n

cy

Bin

Frequency

51

Figure 52. Histogram of Speed Errors (in Miles per Hour) – Location 1, Sensitivity 4

Figure 53. Histogram of Speed Errors (in Miles per Hour) – Location 1, Sensitivity 5

0

10

20

30

40

50

60

-8 -6 -4 -2 0 2 4 6 8 More

F
re

q
u

e
n

cy

Bin

Frequency

1 1
5

56

30

0
0

10

20

30

40

50

60

-30 -20 -10 0 10 More

F
re

q
u

e
n

cy

Bin

Frequency

52

Figure 54, Figure 55 and Figure 56 depict a comparison between the vehicle

classification results obtained through video analysis and TCU data for each loop detector

sensitivity level.

Figure 54. Comparison of Length Classification Between Video and TCU data – Location 1,

Sensitivity 3

Figure 55. Comparison of Length Classification Between Video and TCU data – Location 1,

Sensitivity 4

75

7 5 6

75

8
4 6

0

10

20

30

40

50

60

70

80

Less than 20 From 20 to 35 From 36 to 60 from 61 to 150

Video

TCU

23

4
0

3

22

6

0 2

0

10

20

30

40

50

60

70

80

Less than 20 From 20 to 35 From 36 to 60 from 61 to 150

Video

TCU

53

Figure 56. Comparison of Length Classification Between Video and TCU data – Location 1,

Sensitivity 5

These results show that both sensitivity levels three and four produce consistent results

within each bin level. Sensitivity five is clearly producing great differences and

unacceptable vehicle classification results (assuming the video analysis as the ground

truth). The default ODOT loop detector sensitivity level is four and the results support

that at this sensitivity level the TCU performs accurately with respect to estimating

vehicle length, speed, and classification.

74

7

2

10

37

43

3

10

0

10

20

30

40

50

60

70

80

Less than 20 From 20 to 35 From 36 to 60 from 61 to 150

Video

TCU

54

4.3. LOCATION 2 RESULTS

Table 9 shows the average error in the calculation of speed and length for location 2.

Figure 57 depicts the distribution of length according to ODOT's classification scheme.

This analysis also confirmed that the TCU is able to estimate vehicle lengths and speeds

with acceptable error.

Table 9. Summary of length and speed errors at location 2

Number of Vehicles

in Video

Number of

Vehicles Analyzed

Avg. Length

Difference (ft)

Avg. Speed

Error (mph)

885 37 2.94 3.28

Figure 57. Comparison of Length Classification Between Video and TCU data – Location 2

Figure 48, Figure 49 and Figure 50 depict histograms of length errors for each loop

detector sensitivity level. Figure 51, Figure 52 and Figure 53 depict histograms of speed

errors for each loop detector sensitivity level.

Figure 58 depicts a histogram of length errors at location 2, whereas Figure 59 depicts

a histograms of speed errors at location 2.

0

10

20

30

40

50

60

70

80

Less than 20 From 20 to 35 From 36 to 60

Video

TCU

55

Figure 58. Histogram of Length Errors (in Feet) – Location 2

Figure 59. Histogram of Speed Errors (in Miles per Hour) – Location 2

1
0 0 0

8

6 6

8

6

2

0
0

2

4

6

8

10

12

14

-8 -6 -4 -2 0 2 4 6 8 10 More

F
re

q
u

e
n

cy

Bin

Frequency

1
2

1
2

5

11

5
6

4

0

2

4

6

8

10

12

14

-6 -4 -2 0 2 4 6 8 More

F
re

q
u

e
n

cy

Bin

Frequency

56

5.0 CONCLUSIONS AND RECOMMENDATIONS

To be completed

57

6.0 REFERENCES

Acrylonitrile butadiene styrene. (2013, January 27). In Wikipedia, the free encyclopedia.

Retrieved from

http://en.wikipedia.org/w/index.php?title=Acrylonitrile_butadiene_styrene&oldid=

534476303

Itekyala, S. R. (2010). Vehicle Classification under Congestion using Dual Loop data.

University of Cincinnati.

Nihan, N. L., Wang, Y., & Cheevarunothai, P. (n.d.). Improving Dual-Loop Truck (and

Speed) Data: Quick Detection of Malfunctioning Loops and Calculation of

Required Adjustments.

Nihan, N., Wang, Y., & Zhang, X. (2005). Improved Dual-Loop Detection System for

Collecting Real-Time Truck Data. Department of Civil Engineering Of University

of Washington.

Nihan, Nancy L., Wang, Y., Cheevarunothai, P., & Northwest, T. (2006). Improving

dual-loop truck (and speed) data: quick detection of malfunctioning loops and

calculation of required adjustments. Citeseer. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.7244&rep=rep1&typ

e=pdf

58

APPENDIX A

59

